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a b s t r a c t

Recent reports that a wide variety of natural and man-made compounds are capable of competing with
natural hormones for estrogen receptors serve as timely examples of the need to advance screening
techniques to support human health and ascertain ecological risk. Quantitative structure–activity rela-
tionships (QSARs) can potentially serve as screening tools to identify and prioritize untested compounds
for further empirical evaluations. Computer-based QSAR molecular models have been used to describe
ligand–receptor interactions and to predict chemical structures that possess desired pharmacological
characteristics. These have recently included combined and differential relative binding affinities of poten-
tial estrogenic compounds at estrogen receptors (ER) � and �. In the present study, artificial neural network
(ANN) QSAR models were developed that were able to predict differential relative binding affinities of a
series of structurally diverse compounds with estrogenic activity. The models were constructed with a
dataset of 93 compounds and tested with an additional dataset of 30 independent compounds. High

2
training correlations (r = 0.83–0.91) were observed while validation results for the external compounds
were encouraging (r2 = 0.62–0.86). The models were used to identify structural features of phytoestrogens
that are responsible for selective ligand binding to ER� and ER�. Numerous structural characteristics are
required for complexation with receptors. In particular, size, shape and polarity of ligands, heterocyclic
rings, lipophilicity, hydrogen bonding, presence of quaternary carbon atom, presence, position, length and
configuration of a bulky side chain, were identified as the most significant structural features responsible
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for selective binding to ER

. Introduction

Estrogens are steroid hormones integral to the human endocrine
ystem. They have diverse physiological and pathophysiological
unctions in different tissues and cell types in the body. Estro-
ens regulate the growth and development of reproductive systems
s well as homeostasis in a variety of tissues. They play impor-
ant roles in bone maintenance, in the central nervous system,
nd also in the cardiovascular system where they display cer-
ain cardioprotective effects [1]. A large number of different
athological conditions are associated with changes in the produc-
ion of estrogen and cellular responses to an estrogen stimulus.

hus, compounds with estrogenic activity have generated con-
iderable interest as targets for the development of therapeutic
gents.
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The action of estrogen is mediated differentially through
he estrogen receptors � and � (ER� and ER�, respectively).
t the discovery of the estrogen receptor (ER) it was thought

hat only one receptor existed. Then, in 1996, a second type
f ER was cloned from rat [2], human [3–5] and mouse [6].
his receptor was named ER� while the original ER is now
eferred to as ER�. The late discovery of a second ER is not
urprising since physiological endogenous estrogens (estradiol,
strone, and estriol) bind equally well to both ER subtypes,
hereas some anti-estrogens currently used, such as tamoxifen,

aloxifen, block both receptor subtypes with little selectivity [7]
Fig. 1).

The discovery of a second type of ER demonstrated that the
echanisms behind the effects of estrogen are far more com-

lex than previously assumed [8]. Studies have also shown that

he two subtypes have different functions and distributions in
ertain tissues [9]. These differences have stimulated the search
or subtype-specific ligands with tissue- or cell-specific estrogen
ctivity. For example, ER� is dominant in the breast and uterus
uggesting that ER� selective ligands may be used as hormone

http://www.sciencedirect.com/science/journal/07317085
mailto:nena.kustrin@jcu.edu.au
dx.doi.org/10.1016/j.jpba.2008.04.008
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Fig. 1. Natural and semi-synthetic steroidal estrogens.
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Fig. 2. Ph

eplacement therapy without increasing the risk of breast or uterine
ancer [10].

Estrogenic activity is unique in that it does not require a steroidal
tructure, as do the other sex hormones. Intensive research has
evealed that some man-made and naturally occurring chemi-
als can directly interact with the estrogen receptors and disrupt
he normal functioning of the endocrine systems of humans and
ildlife. These chemicals, termed “endocrine-disrupting chemi-

als” (EDCs), are of such scientific and public concern that the
creening and testing of 58,000 chemicals for EDC activity is now
tatutorily mandated in the USA [11]. It is believed that these
hemicals can cause reproductive and child development disorders,
ainly through ER mediated mechanisms of toxicity. There is thus
growing need for ER activity modeling in this field in order to

educe costs and enhance the screening and testing processes. One
trategy lies in the development of quantitative structure–activity
elationship (QSAR) models to screen chemicals based on their
olecular structure for their ability to interact with the endocrine

ystem. Structure–activity relationships (SARs) can serve as screen-
ng tools to prioritize untested compounds for more intensive
nd costly empirical evaluations at a later stage [12]. Numerous
ARs and QSARs have been developed to predict hormone rela-
ive binding affinity (RBA) and to indicate potential estrogenicity
13].

SAR models based on different methods such as CoMFA [14],
OMSIA [15], SOMFA [16], CoSA [16], kNN [17], COmmon REactivity
Attern (COREPA) [18], HQSAR [14], MTD-PLS [19], artificial neural
etworks (ANNs) [20,21] and Raptor [22], provide different per-
pectives on the interactions between the estrogen receptor and
ts ligands. Limitations of these QSAR models are associated with
he size and chemical-structure diversity of the training set, exper-
mental error, structure representation and correlation algorithms
23]. Compared with classical statistical optimization techniques,
NNs have demonstrated utility in managing data containing non-

inear relationships for modeling and predictive purposes. The
bsolute utility of a QSAR model depends on its ability to make
ccurate predictions for unknown chemicals. Regression models

ften demonstrate excellent fit to training data but fail to accu-
ately predict chemicals that differ structurally from the training
et of compounds.

In our recent QSAR model, ANNs were used to model selective
inding of 48 phytoestrogens and structurally related com-
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trogens.

ounds at ER� and ER� [21]. The aim of the present study
as to improve the previous model and overcome limita-

ions associated with data size and diversity, and to further
nvestigate the effects of structural parameters on ER subtype bind-
ng.

. Methods

Relative binding affinities at ER� and ER� of 93 compounds
Figs. 1–3) were taken from the literature [21,24–29]. From
ptimized molecular structures 73 theoretical descriptors were
enerated using Molecular Modeling Pro 5.1 [30] which described
D and 3D structural information as well as molecular phys-

cal/chemical properties. These included constitutional, steric,
lectronic, topological and chemical descriptors described else-
here [21]. Molecular descriptors were used as inputs and

elative binding affinities as the outputs to build the ANN model.
ompounds were randomly divided into training, testing and inde-
endent external validation subsets. Two models were built with
ifferent data division of 73/25/25 and 63/30/30 data subsets for
raining, internal testing and external validation.

.1. ANN modeling

ANNs are learning systems based on a computational tech-
ique that can simulate the neurological processing ability of
he human brain. They can be used to quantify a nonlinear rela-
ionship between causal factors and pharmaceutical responses by

eans of iterative training of experimental or theoretically derived
ata. Intelligent problem solver was used for the initial train-

ng to select the best ANN type. In contrast to traditional linear
echniques in statistics, there is no method known that will auto-

atically locate the optimal neural network to fit a particular
ata set. Neural network designers traditionally run training algo-
ithms a number of times selecting the best network (or perhaps
few of the best). Therefore, a number of experiments with differ-
nt designs are conducted, and a Generalized Regression Neural

etwork (GRNN) was selected based on its performance. Stan-
ard supervised network architectures (multilayer perceptrons and
adial basis functions) infer a parameterized model from avail-
ble training data, with the weights between neurons forming
he parameters. The parameterized network generated is usually
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Fig. 3. Syn

uch smaller than the training data and can be executed quite
uickly, although the time taken to train the model may be long.
n alternative approach is to model the function more-or-less
irectly from the training data which substantially decreases train-

ng time. GRNNs, also known as Probabilistic Neural Network or
ayesian network GRNNs are such a method [31]. GRNNs have four

ayers: input, a layer of radial centres, a layer of regression neu-
ons, and output. The radial layer neurons represent the centres
f clusters of known training data. This layer must be trained by
clustering algorithm such as K-means, subsampling or Kohonen

raining. The radial layer is typically large but not necessarily as
arge as the number of training cases. The regression layer must
ave exactly one unit more than the output layer and contains

inear neurons of two types. There is one type A neuron for each
utput unit and one type B neuron. Type A neurons calculate
he “desired” regression outputs for the cases; the type B neuron
alculates the probability density. The output layer executes a spe-
ial post-synaptic division. Each unit simply divides the output of
he type A unit by the output of the type B unit in the previous
ayer.

The primary advantage of GRNN is the speed at which the

etwork can be trained. There are no training parameters such
s learning rate and momentum in back-propagation network,
ut there is a smoothing factor that is applied after the network

s trained. The smoothing factor allows the GRNN to interpolate
etween data in the training set.

i
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a
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estrogens.

.2. GRNN optimization

The commercially available Statistical Neural Networks software
ackage [32] was used throughout the study for model genera-
ion and optimization. Manually-determined parameters included:
he number of neurons in the second radial layer, the smooth-
ng factor controlling deviation of the Gaussian kernel function
ocated at the radial centers (set at 0.1) and the clustering algo-
ithm (K-means in the present study). A sum-squared error function
as used in training the network whereby the error, calculated

s the sum of the squared differences between the obtained and
ctual RBA value on each training prediction, determined train-
ng performance. Optimization of the GRNN model was achieved
y monitoring predictions for the 30(25) internal testing com-
ounds. Once the model was developed and optimized, sensitivity
nalysis was applied in order to select relevant molecular descrip-
ors. Molecular descriptors were ranked according to sensitivity
f the training subset and 21 most important descriptors were
dentified. Sensitivity analysis indicates which input variables are
onsidered most important by neural network and identifies vari-
bles that can be safely ignored. Input variables are not, in general,

ndependent and there are interdependencies between variables.
ensitivity analysis rates variables according to the deterioration in
odeling performance that occurs if that variable is no longer avail-

ble to the model and assigns a single rating value to each variable.
he aim of descriptor subset selection was to balance minimum
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Table 1
Optimum model characteristics

Architecture Data division rtraining (r2) rtesting (r2) rvalidation (r2)
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ER� ER� ER� ER� ER� ER�

odel 1 63/30/30 21-64-3-2 0.921 0.925 0.653 0.569 0.851 0.789
odel 2 73/25/25 21-73-3-2 0.914 0.956 0.414 0.654 0.872 0.925

odel complexity with maximum predictive performance during
nternal testing. The optimum model was next validated with the
xternal subset of compounds to assess true predictive ability. The
nal combination of descriptors could then be analysed.

. Results and discussion

.1. Optimum models

A diverse set of compounds were evaluated in the present
tudy for various molecular attributes including size/shape param-
ters (molecular weight, surface area, volume, kappa shape
nd connectivity indices 0–3), electrostatic parameters (dipole
oment, valence indices 0–3 and CIM indices), solubility param-

ters (log Kow, solubility, polarity, percent hydrophilic surface and
ydrophilic–lipophilic balance), hydrogen bonding potential, cyclic
omponents and specific substitution.

Two optimum models with different ratios of training/internal
esting/external validation subsets (63/30/30 and 73/25/25, respec-
ively) were selected. High training variances (r2 > 0.835) were
chieved by both models for ER� and ER� (Table 1) indicating that
ppropriate nonlinear relationships amongst the data were being
odeled. As expected, true prediction correlations were not as high

s those seen during training but were close to 0.8 or above. Model
accounted for more than 75% of the variance in the external pre-
iction subset for both ER� and ER� while Model 2 accounted for

ess than 75% of the variances in the external prediction subset.
Both optimum models had 21 input descriptors selected based

n the sensitivity analysis. Ten of the final descriptors in these two
odels were identical (Table 1). The remaining 11 descriptors were

oth similar and highly correlated. Both models selected molecu-
ar length, �2 shape index, hydrogen bond donor, water solubility,
umber of carbons in nonaromatic rings and number of carbons

n six membered aromatic ring, substituted double bond, ether or
xygen bridge and connectivity index. The remaining of selected
escriptors was related to the molecular size, polarity (CIM indices),
olubility, lipophilicity, hydrogen bonding, presence of nitrogen and
xygen in nonaromatic ring, presence of a nitrile.

.2. Descriptor analysis

While the structures of estrogen agonists vary widely, they can
e classified as either steroids or nonsteroidal synthetic structures.
he length and width of both the steroid skeleton and nonsteroidal
ynthetic estrogen diethylstilbestrol (DES) skeletons fit well into
he receptor-binding pocket. Nonsteroidal molecules such as DES
ave activity similar to that of estradiol. The activity of DES ana-

ogues was explained in 1946 when it was proposed that the critical
tructural requirement for the receptor recognition is the distance
etween two oxygens that should be 12.1 Å [33]. Modern medicinal
hemistry has shown that the actual distance is 12.1 Å in diethyl-
tilbestrol and 10.9 Å in estradiol. However, in aqueous solution,

stradiol has two water molecules hydrogen bonded to the 17-OH.
f one water molecule is included in the distance measurements,
here is a perfect fit to 12.1 Å [34].

The number of carbon atoms is related to the molecular size.
he ligand-binding pockets of the alpha and beta subtypes are

a
B
f

s
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imilar but not identical [35]. The ER� ligand-binding pocket is
maller (390 Å versus 490 Å for ER�) and differs in two amino acids.
eu384 and Met421 in ER� are replaced by Met336 and Ile373 in
R� [36]. In general, ER� selective ligands seem to be smaller and
ore polar than ER� selective ligands. Furthermore, domain near

he 17� position of estradiol is larger in ER� than in ER�. This
istinction suggests that increasing steric bulk in this region will
nhance the binding affinity for ER�. Indeed, moxestrol (RBA = 43
nd 5) and norethynodrel (RBA = 0.7 and 0.22), both with 17-ethynyl
ubstituent, have higher binding affinities for ER� than ER�.

Molecular lipophilicity was encoded in water solubility, selected
y Model 1, and also in the log P and Hansen solubility descrip-
ors that were selected by Model 2. Natural estrogens are lipophilic

olecules with two polar groups attached at the ends of the
olecule. Strong estrogens tend to be more hydrophobic. The vol-

me available in the receptor pocket exceeds the size of natural
igand leaving a bit of empty space in the binding pocket around
� and 11 position of the estradiol (B and C rings). This empty
pace provides an explanation for the high affinity of ligands with
ubstituents at these positions. However, addition of a hydrophilic
roup at C-11 position (such as a hydroxyl or keto group) almost
ompletely eliminates binding affinities for both receptors. Addi-
ion of a lipophilic group with even a bulkier size (acetate or

ethoxy group) does not affect the binding affinities of natural
strogens. This indicates that the large decrease in binding affinities
s not due to steric hindrance caused by the C-11 position substitu-
ions but is primarily due to alterations of the lipophilicity near the
-11 position.

Kappa (�) indices encode attributes of molecular shape by
uantifying the structure of a compound in terms of its relative
tar-likeness and straight chain-likeness shapes. The �2 molecular
hape index can distinguish among geometric cis and trans isomers.
resence of substitutions is essential for the nonsteroidal stilbene
strogens (diethylstilbesterol, dienestrol and hexestrol). Geometric
somers have different spatial arrangements of atoms and receptor
nteractions are also different. The trans-isomer of the diethylstilbe-
trol has 14 times greater estrogenic activity than the cis-isomer
ue to its overall structure and the interatomic distance between
he two hydroxyls. The presence of a substituted double bond is
ssential for the nonsteroidal stilbene estrogens (diethylstilbes-
erol, dienestrol and hexestrol). It can be regarded as a measure
f molecular flexibility. Recent studies indicate that the potency
nd agonist or antagonist activity of steroid hormone ligands are
ependent, in part, on ligand–receptor binding affinity as well as
he conformation of the ligand–receptor complex. The binding of
igands to hormone receptors is thought to involve interactions by

hich shapes of both the receptor and ligand are modified in the
ormation of the ligand–receptor complex. As a consequence, it
s essential to explore the significance of ligand flexibility in the
evelopment of screening-level structure–activity relationships.
he double bond contributes to rigidity of the molecule and its
hape. As long as the OH-to-OH distance relationship is maintained,
ignificant estrogenic activity is found. Without the central double
ond and two ethyl or alkyl groups the molecule loses its rigidity
nd shape and the distance between two hydroxyls is not fixed.

Model 2 contained the quaternary carbon atom descriptor. Qua-
ernary carbon atoms are found in many isoprenoic compounds.
nzymes aromatase catalyzes removal of C-19 from androgens,
eading to the formation of estrogens. Aromatization of A ring in
atural estrogens alters the overall shape of the molecule. The rel-

tive spatial orientation of the A-steroidal ring with respect to the
-ring, may be considered as important structural characteristics

or ER� ligand recognition.
Estrogen receptors exhibit stereo-selective ligand binding and

tereoselective recognition of several chiral compounds. Substi-
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pocket and its suboptimal fit in the slightly smaller ER� pocket [29].
In contrast, SS enantiomers have similar agonist activity at ER� and
ER�.

Table 2
Descriptors and combined sensitivity ranking in the two optimum models

Model 1
(21-63-3-2)

Rank Model 2
(21-73-3-2)

Rank

Molecular length 18 Molecular length 14
H bond donor 1 H bond donor 3
Kappa 2 11 Kappa 2 15
Water solubility 15 Water solubility 13
ORR 6 ORR 4
CIM 5 14 CIM 5 8
C in nonaromatic rings 9 C in nonaromatic rings 9
R C 12 R C 11
R CR 12 R CR 12
C in six membered
aromatic rings

19 C in six membered
aromatic rings

1

CIM 6 17 CIM 4 16
CIM 7 12 Hydrophilic surface area 7
CIM 8 7 CHRRR (chiral C) 10
CIM 9 3 Log P 2
CIM 10 5 H bond acceptor 5
C in molecule 11 O in nonaromatic ring 17
R=CRR 13 Singly bonded N in

aromatic ring
18

Triple bonded C 10 N in five membered 19
74 S. Agatonovic-Kustrin et al. / Journal of Pharma

uted tetrahydrochrysene (THC) ligands are potent agonists at ER�
ut also potent antagonists at ER�. This characteristic is a func-
ion of substituent size and stereochemistry. SS enantiomers have
imilar agonist activity to ER� and ER�. The difference in efficacy
f R,R-THC on the two receptor subtypes arises from its optimal
t in the ER� ligand-binding pocket and its suboptimal fit in the
maller ER� pocket. All THCs are agonists on ER� receptor, and
HCs with small substituents are agonists on both ER� and ER�.
s substituent size increases, ER�-selective antagonism is devel-
ped first in the R,R-cis enantiomer series and finally in the trans
nd S,S-cis enantiomer series.

The descriptor encoding the number of carbons in six-
embered rings (C aromatic 6) was present in the final model,

ndicating the importance of the presence of an aromatic ring.
mongst the great variety of molecular structures found in the
any classes of nonsteroidal ER ligands, it appears that a phenolic

ing can mimic the steroid “A-ring” present in natural estrogens
uch that presence of a phenolic ring is often associated with
strogenic activity [37]. The phenolic ring is thought to develop
ignificant H-bond at the ER binding domains with Glu 353 and
rg 394 (ER�) and Glu 305 and Arg 346 (Er�) [38].

The most common types of phytoestrogens are flavones,
soflavones and lignans. These compounds belong to the large group
f substituted phenolic compounds known as flavonoids which
ontain the essentially planar benzopyrane moiety. Of note was
nclusion of the oxygen bridge or ether (ORR) descriptor in the final

odel which encodes the presence of an ether oxygen such as the
ne found in the flavanoids. Recently, the prenylated flavanone,
-prenylnaringenin (8-PN) was identified as a potent estrogen
emonstrating the highest in vitro estrogenic activity among all
hytoestrogens known to date [39].

Several nitrogen descriptors were included in the final models:
in aromatic rings, double and triple bonded N, and N adjacent to

nother N. Several triaryl-substituted five-membered heterocycles
how exceptionally large potency and efficacy preferences for ER�
40]. They function as agonists on both ER� and ER� but in cell-
ased assays of gene transcription they activate ER� at much lower
oncentrations [41]. The best of these are triaryl–alkyl-substituted
yrazoles and furans that function as complete ER� agonists, but
re almost completely inactive on ER�. Propyl pyrazole triol (PPT)
s approximately 10,000-fold more potent on ER� than on ER� and
t shows ER�-selective effects in vivo [42]. Other larger ring hete-
ocycles, such as tetrasubstituted pyrimidines and pyrazines, also
etain greater potency and efficacy on ER� than on ER� [43].

Triple-bonded C and N (C N) are clearly nitrile functional
roups. New synthetic bis-benzylnitriles synthetic and related
ompounds have up to 170-fold potency selectivity on ER� [44].
ecently a number of diarylpropionitriles, diarylsuccinonitriles as
ell as acetylene and polar analogues of these nitriles were also

ound to be ER�-selective agonists. These ligands have been shown
o have high receptor selectivity and considerable ER binding affin-
ty, some almost as much as that of the estradiol. It has been found
hat ER� has a lesser ability to tolerate the polar nature of the nitrile
unctionality, while the ER� is less affected by the polar nature of
he nitrile function than by the geometric requirement of the sp
ybridization. As a result, ligands with linear groups show high
electivity for ER�, and the increased polarity of the nitrile group
educes the affinity of the ligand for ER�, resulting in higher ER�
inding selectivities [44].

Hydrogen bonding is a key interaction in estradiol binding at

he ER. The A ring alcohol group is known to form H-bond con-
acts with Glu 353 and Arg 394 while the D ring hydroxyl binds
ith His 524 residues in the receptor pocket [37]. X-ray crys-

allography has also confirmed that the phenol alcohol group of
7�-estradiol acts as a hydrogen donor while the 17�-hydroxyl

T
N
C
a

al and Biomedical Analysis 48 (2008) 369–375

roup is a better hydrogen bond acceptor than donor [38]. In other
tudies on the structural requirements for ER binding and asso-
iated estrogenic responses, it was inferred that hydroxylation at
pecific sites of the estratrien-17�-ol aromatic A ring is a critical
equirement. Hydroxylation at the 2 or 3 positions promoted high
ffinity of a ligand for the ER, while hydroxylation at the 1 or 4
ositions attenuate binding affinity. It has been hypothesized that
he hydroxyl groups at positions 2 and 3 may share, via hydrogen
onding, a common H acceptor/donor site in the receptor cavity
45].

Chemically intuitive molecular (CIM) indices are noted for their
tility in describing chemical diversity [46]. In contrast to the clas-
ic topological indices that depend mostly on the size and bulk of
he molecule, CIM indices accounts for the interaction between
toms in molecule and molecule with environment. These inter-
ctions give rise to electron distribution about the atoms as well as
efining the molecular shape and giving rise to polarity, both along

ndividual bond and for the molecule as a whole [47,48]. In general,
R� selective ligands seem to be smaller and more polar than ER�
elective ligands.

The descriptor R C encodes the number of double bonded
arbons with at least one nonhydrogen attachments while the
escriptor R CR encodes the number of double bonded carbons
ith at least two nonhydrogen attachments (both inclusive of aro-
atic carbon). Substituted tetrahydrochrysene (THC) ligands are

otent agonists on ER� but also potent antagonists on ER� [24]. This
haracteristic is a function of substituent size and stereochemistry.
HCs can be regarded as ring-fused derivatives of diethylstilbe-
trol, containing an electron-donating hydroxyl group at C8 and a
igid four-ring structure reminiscent of steroidal estrogens. RR and
S enantiomers of THC have differing activities at ER� and ER�,
or example, ER selective antagonists reside completely in the RR
nantiomer. The difference in efficacy of R,R-THC on the two ER sub-
ypes appears to arise from its optimal fit in the ER� ligand-binding
aromatic rings
riple bonded C with no H 15 Double bonded N 20

C 13 N next to another N 21
in five membered

romatic rings
8 Solubility parameter 6
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.3. GRNN modeling

In silico methods of prediction are gaining increasing popular-
ty in drug discovery due to their speed and relatively low cost.

structure–activity study can indicate which features of a given
olecule correlate with its activity, thus making it possible to

ynthesize new and more potent compounds with enhanced bio-
ogical activities. QSAR analysis is based on the assumption that the
ehaviour of compounds is correlated to the characteristics of their
tructure. Several approaches have been previously proposed for
he development of QSAR models. Linear regression has been one
f the most common techniques used to construct QSAR models.
owever, even with moderate numbers of features this technique
an result in over-fitting [49]. In order to avoid over-fitting, linear
egression is often used in combination with principal component
nalysis (PCA) [50]. Recently, neural networks and genetic algo-
ithms were found to be efficient in constructing QSAR models [51].
he advantage of using a nonlinear method compared to a linear
ethod such as linear regression is that more complex and nonlin-

ar QSAR models can be derived, which in turn can better reflect
he possible relationship between the features of the molecule and
ts activity (Table 2).

. Conclusion

The two QSAR models developed revealed the importance
f simple molecular characteristics for differential ER binding.
oth models selected 10 identical descriptors. These molecular
escriptors encode molecular characteristics that are responsi-
le for nonselective binding. The remaining 11 descriptors were
haracteristic for ER� selectivity (Model 1) and ER� selectiv-
ty (Model 2). Mutual descriptors included molecular size and
hape, cyclic structures, solubility parameters, hydrogen bond-
ng/donating potential, electrostatic parameters and the number
f ether oxygens. The model has confirmed that five distinguishing
riteria are essential for nonselective ER activity of phytoestro-
ens: H-bonding ability of the phenolic ring mimicking the 3-OH,
-bond donor mimicking the 17�-OH, oxygen–oxygen distance
etween 3- and 17�-OH, precise steric hydrophobic centers at
�- and 11�-substituents, hydrophobicity and ring structure. Fur-
hermore, predominant molecular characteristics important for
strogen receptor subtype selectivity for ER� are 17� substituents
nd substituted heterocyclic structure. Molecular size, polarity and
lectronic affect, lipophilic substituents are on the other hand
mportant for ERb selective binding. ANNs have proven to be a use-
ul tool in predictive QSAR modeling and further utility may be
ound by using larger numbers of compounds for model develop-

ent.
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